237 research outputs found

    Potential of a Neutrino Detector in the ANDES Underground Laboratory for Geophysics and Astrophysics of Neutrinos

    Get PDF
    The construction of the Agua Negra tunnels that will link Argentina and Chile under the Andes, the world longest mountain range, opens the possibility to build the first deep underground labo- ratory in the Southern Hemisphere. This laboratory has the acronym ANDES (Agua Negra Deep Experiment Site) and its overburden could be as large as \sim 1.7 km of rock, or 4500 mwe, providing an excellent low background environment to study physics of rare events like the ones induced by neutrinos and/or dark matter. In this paper we investigate the physics potential of a few kiloton size liquid scintillator detector, which could be constructed in the ANDES laboratory as one of its possible scientific programs. In particular, we evaluate the impact of such a detector for the studies of geoneutrinos and galactic supernova neutrinos assuming a fiducial volume of 3 kilotons as a reference size. We emphasize the complementary roles of such a detector to the ones in the Northern Hemisphere neutrino facilities through some advantages due to its geographical location.Comment: 20 pages, 16 figures and 9 table

    On the Viability of Minimal Neutrinophilic Two-Higgs-Doublet Models

    Get PDF
    We study the constraints that electroweak precision data can impose, after the discovery of the Higgs boson by the LHC, on neutrinophilic two-Higgs-doublet models which comprise one extra SU(2)×U(1)SU(2)\times U(1) doublet and a new symmetry, namely a spontaneously broken Z2\mathbb{Z}_2 or a softly broken global U(1)U(1). In these models the extra Higgs doublet, via its very small vacuum expectation value, is the sole responsible for neutrino masses. We find that the model with a Z2\mathbb{Z}_2 symmetry is basically ruled out by electroweak precision data, even if the model is slightly extended to include extra right-handed neutrinos, due to the presence of a very light scalar. While the other model is still perfectly viable, the parameter space is considerably constrained by current data, specially by the TT parameter. In particular, the new charged and neutral scalars must have very similar masses.Comment: 22 pages, 3 figures, references and comments added, conclusions unchanged, matches version to appear in JHE

    Present and Future Searches for Leptoquarks

    Get PDF
    We review the present seach for scalar leptoquarks and the potential of the CERN Large Hadron Collider (LHC) to unravel the existence of first generation leptoquarks. Talk given by O. J. P. Eboli at the International Workshop on "Physics Beyond the Standard Model: from Theory to Experiment", Valencia, 1997.Comment: 10 pages, 3 figures included; LaTex, uses epsfig.sty and sprocl.st

    Measuring the Spectra of High Energy Neutrinos with a Kilometer-Scale Neutrino Telescope

    Get PDF
    We investigate the potential of a future kilometer-scale neutrino telescope such as the proposed IceCube detector in the South Pole, to measure and disentangle the yet unknown components of the cosmic neutrino flux, the prompt atmospheric neutrinos coming from the decay of charmed particles and the extra-galactic neutrinos, in the 10 TeV to 1 EeV energy range. Assuming a power law type spectra, dϕν/dEναEνβd\phi_\nu/dE_\nu \sim \alpha E_\nu^\beta, we quantify the discriminating power of the IceCube detector and discuss how well we can determine magnitude (α\alpha) as well as slope (β\beta) of these two components of the high energy neutrino spectrum, taking into account the background coming from the conventional atmospheric neutrinos.Comment: 21 pages, 7 figure

    Reactor Measurement of theta_12; Principles, Accuracies and Physics Potentials

    Full text link
    We discuss reactor measurement of \theta_{12} which has a potential of reaching the ultimate sensitivity which surpasses all the methods so far proposed. The key is to place a detector at an appropriate baseline distance from the reactor neutrino source to have an oscillation maximum at around a peak energy of the event spectrum in the absence of oscillation. By a detailed statistical analysis the optimal distance is estimated to be \simeq (50-70) km x [8 x 10^{-5} eV^2/\Delta m^2_{21}], which is determined by maximizing the oscillation effect in the event number distribution and minimizing geo-neutrino background contamination. To estimate possible uncertainty caused by surrounding nuclear reactors in distance of \sim 100 km, we examine a concrete example of a detector located at Mt. Komagatake, 54 km away from the Kashiwazaki-Kariwa nuclear power plant in Japan, the most powerful reactor complex in the world. The effect turns out to be small. Under a reasonable assumption of systematic error of 4% in the experiment, we find that sin^2{\theta_{12}} can be determined to the accuracy of \simeq 2% (\simeq 3%), at 68.27% CL for 1 degree of freedom, for 60 GW_th kton yr (20 GW_th kton yr) operation. We also discuss implications of such an accurate measurement of \theta_{12}.Comment: 31 pages, 8 figures. version to appear in PR

    Signal and Backgrounds for Leptoquarks at the LHC

    Get PDF
    We study the potentiality of the CERN Large Hadron Collider (LHC) to unravel the existence of first generation scalar leptoquarks. Working with the most general SU(2)LU(1)YSU(2)_L \otimes U(1)_Y invariant leptoquark interactions, we analyze in detail the signals and backgrounds that lead to a final state containing a pair e+ee^+e^- and jets. Our results indicate that a machine like the LHC will be able to discover leptoquarks with masses up to 2--3 TeV depending on their couplings.Comment: 37 pages, revtex, uses epsfig.sty (included), 15 figures (included

    Signal and Backgrounds for Leptoquarks at the LHC II: Vector Leptoquarks

    Full text link
    We perform a detailed analyses of the CERN Large Hadron Collider (LHC) capability to discover first generation vector leptoquarks through their pair production. We study the leptoquark signals and backgrounds that give rise to final states containing a pair e+e- and jets. Our results show that the LHC will be able to discover vector leptoquarks with masses up to 1.3-2.1 TeV depending on their couplings to fermions and gluons.Comment: 18 pages, 3 figures, REVTe

    Constraints from Solar and Reactor Neutrinos on Unparticle Long-Range Forces

    Full text link
    We have investigated the impact of long-range forces induced by unparticle operators of scalar, vector and tensor nature coupled to fermions in the interpretation of solar neutrinos and KamLAND data. If the unparticle couplings to the neutrinos are mildly non-universal, such long-range forces will not factorize out in the neutrino flavour evolution. As a consequence large deviations from the observed standard matter-induced oscillation pattern for solar neutrinos would be generated. In this case, severe limits can be set on the infrared fix point scale, Lambda_u, and the new physics scale, M, as a function of the ultraviolet (d_UV) and anomalous (d) dimension of the unparticle operator. For a scalar unparticle, for instance, assuming the non-universality of the lepton couplings to unparticles to be of the order of a few per mil we find that, for d_UV=3 and d=1.1, M is constrained to be M > O(10^9) TeV (M > O(10^10) TeV) if Lambda_u= 1 TeV (10 TeV). For given values of Lambda_u and d, the corresponding bounds on M for vector [tensor] unparticles are approximately 100 [3/Sqrt(Lambda_u/TeV)] times those for the scalar case. Conversely, these results can be translated into severe constraints on universality violation of the fermion couplings to unparticle operators with scales which can be accessible at future colliders.Comment: 13 pages, 3 figures. Minor changes due to precision in numerical factors and correction in figure labels. References added. Conclusions remain unchange

    Combining Accelerator and Reactor Measurements of theta_13; The First Result

    Get PDF
    The lepton mixing angle theta_13, the only unknown angle in the standard three-flavor neutrino mixing scheme, is finally measured by the recent reactor and accelerator neutrino experiments. We perform a combined analysis of the data coming from T2K, MINOS, Double Chooz, Daya Bay and RENO experiments and find sin^2 2theta_13 = 0.096 \pm 0.013 (\pm 0.040) at 1 sigma (3 sigma) CL and that the hypothesis theta_13 = 0 is now rejected at a significance level of 7.7 sigma. We also discuss the near future expectation on the precision of the theta_13 determination by using expected data from these ongoing experiments.Comment: Final version to be published in JHEP, RENO included, theta13 = 0 is now rejected at 7.7 sigma CL, 12 pages, 4 figure
    corecore